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Abstract 

Limitations to chemical syntheses have always been present and prevented reactions 

from producing products effectively or even at all. The goal of this thesis is to tackle these 

limitations by the use of one thing; nano-reactors. These nano-reactors possess innate 

properties which provide viable options to improve the effectiveness of chemical reactions. 

The reaction that is going to be tackled is the synthesis of biodiesel fuels.  

Biodiesel fuels are fatty acid-based esters that can be synthesized from used or 

unused cooking oils through a simple transesterification reaction1. The simplicity of the 

reaction, recyclable use of cooking oils, and environmental benefits of using biodiesel fuels 

provide a viable option to replace currently used petroleum based fuels1. 

Experimental results of the one-pot reaction used to synthesize biodiesel fuels 

provided yields 99% plus consistently. The reaction success along with the aforementioned 

benefits indicate that biodiesel fuels could be a possible replacement for currently used 

petroleum based fuels.           

 

  



Nano-Reactors and Their use in Organic Synthesis 

 

 Organic synthesis has been successfully used to produce a plethora of organic 

molecules for various applications. Producing a product is not the only measure of reaction 

success as the ease and effectiveness of producing the product also plays a major role. Ideal 

reactions are cheap, require small amounts of reactants, and have high yields. This is often 

not the case as many reactions require excess amounts of reactants and are costly relative to 

the amount of product produced. When the previous conditions define a synthesis, better 

reaction schemes are sought after to reach high yield at a low cost. This is where this thesis is 

centered; finding ways to make organic syntheses more successful, specifically trying 

produce the profoundly desired high yield. To do this, traditional organic syntheses will be 

modified with the inclusion of nano-reactors to attempt to increase reaction yields. 

 The term nano-reactor refers to a solid, sand like substance primarily made up of 

bis(trimethoxysilylethyl)benzene (BTEB), a swellable organically modified silica (SOMS) 

compound invented by Paul L. Edminston4. The structure of BTEB is shown in Figure 1. 

 

Figure 1: Chemical Structure of bis(trimethoxysilylethyl)benzene, the compound comprising the nano-reactors 

used to improve reaction success6. 



The structure of this molecule provides it an innate ability to form a flexible, cross linked 

system via Si-O-Si bonds6. While doing this the aromatic center of the molecule is rather free 

and can interact with other aromatic centers via the pi orbitals perpendicular to the plane of 

the benzene ring. This interaction allows for a “stacking” of these rings and causes the cross-

linked system to condense6. While interactive, this stacking is weaker than the Si-O-Si bonds 

and can be disrupted by the introduction of organic solvents into the system. The disruption 

of these interactions causes the cross-linked system to expand, opening a fillable space inside 

the system. Removing the solvent will cause the system to return to its condensed form and 

this expand-condense method can be repeated with the introduction and removal of organic 

solvents6. This process can be taken advantage of during chemical reactions, and therein lies 

the reason for the use of the nano reactors. The process can be done by combining a set of 

reactants, a solvent, and the nano-reactor together. The aforementioned spaces produced by 

the solvent induced expansion of the nano-reactors now holds the reactants. The removal of 

the solvent, caused by refluxing or rotary evaporation, rapidly condenses the nano-reactors, 

increasing the kinetic energy of the reactants and the likelihood of their contact, therefore 

increasing their chance of reacting6. This process can be repeated until full reaction 

completion. Figure 2 shows a diagram of the nano-reactor reaction process. 



 

Figure 2: Mechanism of nano-reactor aided synthesis6. The nano-reactor can expand and condense with the 

addition and removal of solvent until the reaction makes full completion. 

 To prove the successful nano-reactor mechanism, previous work has been done by the 

research group with biodiesel fuels. A biodiesel synthesis combining cooking oil with an 

alcohol in an acid catalyzed reaction was performed and the percent yield was measured7. 

Figure 3 shows the associated data from the reactions. 

 



Figure 3: Percent yield data of 10 biodiesel synthesis reactions. Yields of 95% plus were obtained in all trials7. 

Figure 3 shows that all biodiesel synthesis reactions performed reached yields of above 95%, 

supporting the theory of increased reaction yield associated with the use of the nano-

reactors7. 

 The above data also supports the reusability of nano-reactors. All of the biodiesel 

trials shown above were run using the same nano-reactors, with methanol washes to clear the 

system after each trial. The consistent high yield of each reaction also supports the reusability 

of the nano-reactors along with the increased reaction yields further proving their viability7. 

 While showing the reaction success, the results omit the time required to reach high 

yields. A separate test was run to determine how long the reaction took to reach maximum 

yield7. Reaction rates were measured using “closes,” a term that refers to a single expansion 

and condensing of the nano-reactor. The time of a close depends mainly on the solvent used 

in the reaction. For example, a close using dichloromethane takes a matter of seconds in a 

rotary evaporator while using methane would take far longer9. A biodiesel reaction was run 

with a nano-reactor while a small sample of product was analyzed for conversion after each 

close. Figure 4 shows the progression of the reaction yield. 



 

Figure 4: Percent conversion of cooking oil to biodiesel measured after each close of the nano-reactor7. 

Figure 4 shows that only 13 closes were needed to reach nearly 100% conversion of cooking 

oil into biodiesel7. The small time required to reach full conversion again supports the 

viability of the use of nano-reactors. 

 Bringing it all together, manipulating the closure method of nano-reactors to perform 

organic syntheses can increase reaction yield with reactions reaching full completion in a 

short amount of time while the same nano-reactors can be reused with continued success 

between syntheses. With the success of nano-reactor enhanced reactions proven, their use can 

be applied to more fields. The field that will be focused on here will be a continuation into 

the synthesis of biodiesel fuels. 

 

Synthesis of Biodiesel Fuels 

 

Introduction 



 Biodiesel is an alternative fuel source often produced from renewable resources such 

as vegetable oils and animal fats1. Most biodiesel products are synthesized from cooking oil, 

which is chemically composed of triglycerides, or three fatty acids connected via an ester 

bond to glycerol, providing a 3:1 molar ratio of fatty acids to glycerol1. Figure 5 shows the 

structure of a general triglyceride molecule containing three fatty acids bonded to the 

glycerol backbone. 

 

 
 
Figure 5: Chemical structure of a triglyceride molecule2. R1, R2, and R3 represent carbon chains of varying 

length and hydrogen saturation on the three fatty acid groups. Carbon chains can be the same or different 

depending on the triglyceride2. The three fatty acid groups allow for biodiesel to be produced simply from the 

triglyceride because of their structural similarities to biodiesel. 

The environmental and safety benefits of biodiesel are far better than petroleum-

based diesel fuels significantly increasing the interest in biodiesel research1. Biodiesel 

possesses chemical characteristics that allow for better safety standards than conventional 

fuels. The benefits of biodiesel include improved safety for the user in both handling and 

manufacturing, positive effects on the engine using the fuel, and reduces environmental 

pollution1. 



Biodiesel has a significantly higher flashpoint of 130 °C than the 52 °C flashpoint for 

petroleum-based fuels1. The higher flashpoint of biodiesel makes it far less likely to combust 

than petroleum-based fuels allowing for significantly safer storage and transport. 

Petroleum-based fuels also affect the environment in many negative ways. When 

spilled, petroleum-based fuels can cause significant damage to the environment and the 

wildlife by inhibiting animal activity by toxicity and pollution1. This is not the case with 

biodiesel fuels as they are synthesized with plant and animal products so the damage they 

cause on the environment is far less severe when spilled. Environmental harm is also caused 

by the release of gas, specifically carbon dioxide, into the environment when petroleum-

based fuels is combusted1. Biodiesel still produces carbon dioxide, but compared to 

petroleum based fuels, the release is much smaller in quantity. Analysis by the Argonne 

National Laboratory indicates carbon dioxide emissions of biodiesel were reduced by 74% in 

comparison to petroleum-based fuels1.  

Biodiesel also has a positive effect on the state of the engine using it. Fuel lubricity is 

an important characteristic of fuel used in engines that measures how much a fuel breaks 

down an engine overtime, eventually leaving it inoperable1. Biodiesel has a better fuel 

lubricity than petroleum-based fuels and therefore is better at maintaining the state of the 

engine. Even blending biodiesel with petroleum-based fuels improved lubricity with as little 

as 1% of biodiesel in the blend1. 

Biodiesel is synthesized via a transesterification reaction, where the nucleophilic 

attacking alcohol creates a new carbon-oxygen ester bond with the carbonyl as the previous 

carbon-oxygen ester bond is broken displacing the original alcohol2. Catalysts, specifically 

acid catalysts in the reaction scheme used in this experimentation, can be used to increase 



yield and reaction rates. Due to the three fatty acids present in the triglyceride molecule, 

transesterification must occur three times to completely convert all fatty acids in a single 

mole of triglyceride into biodiesel. Equation 1 shows the generic chemical reaction. 

3𝐶𝐻3𝑂𝐻 + 𝑇𝐺 → 3𝐵𝐷 + 𝐺𝐿               (1) 

 

In Equation 1 TG, BD, and GL represent triglyceride, biodiesel, and glycerol respectively. A 

3:1 molar ratio of biodiesel to glycerol in the products is evidenced here. The mechanism of 

this reaction is shown in Figure 6. 

 
Figure 6: Mechanism of biodiesel synthesis from cooking oils2. The R groups are varying carbon chains 

specific to the oil and alcohol used. The reactants used during experimentation are explained in the 

experimental methods section. 



 

Figure 6 depicts the mechanism of transesterification for biodiesel synthesis via 

nucleophilic acid attack2. Step A corresponds to the pronation of a single carbonyl group via 

acid to increase the electrophilicity of the carbon of the carbonyl group. Step B corresponds 

to the nucleophilic attack of the alcohol on the enhanced electrophile of the carbonyl center. 

Step C corresponds to the reformation of the previously broken π bond of the carbonyl 

resulting in the breaking of the ester bond to glyceride molecule. Step D corresponds to the 

deprotonation of the carbonyl group and the loss of the excess proton on the bonded alcohol 

to produce the final biodiesel product. This reaction scheme must be run twice more to 

release the last two fatty acid groups2. Specific reactants used in this experiment are specified 

in the experimental methods section. 

Furthermore, during biodiesel synthesis the carbon-oxygen ester bond is severed with 

an alcohol to produce three biodiesel molecules and glycerol as a side product2. Figure 7 

shows these products. 

 
Figure 7: Chemical structure of the products of the esterification reaction2. Figure 2A depicts glycerol 

while 2B depicts three biodiesel molecules. R1, R2, and R3 are carbon chains of varying length and carbon 



saturation. R4 is the carbon chain specific to the alcohol used synthesize the biodiesel. The final molar ratio of 

the reaction is 3:1 as three biodiesel molecules are produced while only one glycerol molecule is. 

Figure 7 depicts the chemical structures of the products of biodiesel synthesis2. The 

separation of the biodiesel fuel from the glycerol is easy as glycerol and biodiesel are 

immiscible with different densities and can therefore be separated easily after synthesis.  

The final produced products are immiscible, pure, and possess different densities, 

allowing for easy separation and identification after completion of the reaction2. To 

determine the presence of glyceride / glycerol and biodiesel the protons corresponding to the 

methylene group of the glyceride / glycerol molecule and the methoxy group of the biodiesel 

product were monitored with Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR). 

Figure 8 depicts the corresponding protons of interest. 

 

 

Figure 8: Hydrogen atoms used in identification of glyceride / glycerol and biodiesel presence in reaction 

products via 1H-NMR. Figure 5A1 depicts the methylene protons, circled, of the glyceride molecule present in 

unconverted cooking oil. Figure 5A2 depicts the methylene protons, circled, of the glycerol molecule present in 



the reaction product. Figure 5B depicts the methoxy protons, circled, of the biodiesel molecule present in the 

reaction product. 

Figure 5 depicts the hydrogen atoms used in the identification of glyceride / glycerol and 

biodiesel presence in reaction products. The presence of methoxy protons in the reaction 

indicate the production of biodiesel while the presence of the methylene protons indicates the 

presence of either glyceride or glycerol. 1H-NMR was used to identify the presence of the 

molecules by peak identification. Figure 9 and 10 show 1H-NMR spectra of cooking oil and 

biodiesel respectively, with each peak identified. 

 

 Figure 9: 1H-NMR spectra of vegetable oil before the reaction. The boxed peaks correspond to the methylene 

protons of the glyceride and glycerol molecules, circle on molecule.  



 

Figure 10: 1H-NMR spectra of biodiesel. The boxed peak corresponds to the methoxy proton, shown in the 

molecule above, present in the biodiesel produced from the reaction.  

 

Figures 10 depicts the 1H-NMR spectra of canola oil with the methylene peaks 

indicated. These peaks decrease in size as the vegetable oil is converted into biodiesel 

because the biodiesel spectrum loses methylene protons. The full loss of the methylene peaks 

indicates the full conversion of the vegetable oil into biodiesel. Other peaks correspond to 

separate protons on the triglyceride but are not pertinent in molecule identification.  

 

Methods 



A reaction scheme designed by the Shaw Research Group was used to synthesize 

biodiesel from used cooking oils7. To a round bottom flask 4.0 M HCl (423 μL, 1.7 mmol), 

methanol (6.0 mL, 0.15 mol), cooking oil (0.5000 g, ~0.5758 mmol), and the nano-reactor 

(2.000 g) were added. The exact amount of these reactants was not important, but the ratio of 

each reactant to each other needed to be precise. The amount of methanol was also varied to 

insure complete encompassing of the nano-reactor and other reactants. Methanol was chosen 

since it provided the least possible steric hindrance from the alcohol. The approximation in 

the moles of cooking oil was due to the fact that the exact composition, and therefore 

molecular weight, was not known for each oil used. The flexing process previously described 

was used to perform the reaction and take advantage of the properties of the nano-reactor. 

The reaction was run overnight to insure complete conversion of the cooking oils. 1H-NMR 

was used to determine the completion of the reaction by identifying the presence, or lack 

thereof, of the methylene and methoxy hydrogen. If methylene peaks were still present, the 

reaction was allowed to run until the peaks were completely removed, indicating the 

complete formation of biodiesel.  

Once the methylene peaks were completely removed, indicating the complete 

conversion of glyceride into biodiesel, the product was vacuum filtered with methanol to 

remove all product from the nano-reactor and separate the nano-reactor from the biodiesel. 

The biodiesel, glycerol, and methanol mixture was then put on a Heidolph Hei-VAP rotary 

evaporator to remove all the methanol. Once all the methanol was removed, the 

corresponding biodiesel-glycerol product separated due to density differences between the 

products. When put into a separation funnel, biodiesel composed the top layer and glycerol 



composed the bottom layer. This was confirmed by 1H-NMR. The biodiesel layer was used 

to determine the percent conversion of the glyceride molecule. 

 

Results 

Data used to determine the presence of biodiesel, glyceride, and glycerol was 

obtained using 1H-NMR. Integrations of the peaks were used to precisely determine exactly 

how much of the vegetable oil was converted into biodiesel. Figure 11 and 12 show the 1H-

NMR spectra for biodiesel produced from new and used cooking oils respectively and the 

peaks used for conversion calculations. 

 

 



Figure 11: 1H-NMR spectrum after the biodiesel synthesis reaction with unused cooking oil was run overnight. 

Box A corresponds to the methylene peaks of glycerol and glycerides. Box B corresponds to the methoxy peaks 

of the biodiesel molecule. Data from this spectrum corresponds to sample number 1 in Table 1.  

 

Figure 11 depicts the 1H-NMR spectrum of biodiesel synthesized from canola oil. 

Box A corresponds to the methylene peaks of glyceride and glycerol. Box B corresponds to 

the methoxy peaks of the synthesized biodiesel. The small integration values of the 

methylene peaks in comparison to the methoxy peak indicate that much more biodiesel was 

present than glycerides or glycerol. Data from this spectrum corresponds to sample number 1 

in Table 1. All other spectra for each unused cooking oil run are not shown, but the same 

method for data analysis was used. 

 



Figure 12: 1H-NMR spectrum after the biodiesel synthesis reaction with used cooking oil was run overnight. 

Box A corresponds to the methylene peaks of glycerol and glycerides. Box B corresponds to the methoxy peaks 

of the biodiesel molecule. Data from this spectrum corresponds to sample number 1 in Table 2.  

 

Figure 12 depicts the 1H-NMR spectrum of a biodiesel synthesis with used cooking 

oil run overnight. Box A corresponds to the methylene peaks present in glycerol and 

glycerides. Box B corresponds to the methoxy peak of the synthesized biodiesel. The 

integration of the peaks was used in determining the amount of each molecule left after the 

reaction. The methylene peaks were still present, but with such smaller integration in 

comparison to the methoxy peak. The much higher integration values from the methoxy peak 

indicates that biodiesel is much more prominent than the triglyceride. Data from this 

spectrum corresponds to sample number 1 in Table 2. All other samples used the same 

method of analysis via 1H-NMR.  

 

Table 1: Chemical shift and integration measurements of canola oil biodiesel samples from 

1H-NMR 

Sample Number Peak Type Chemical Shift 

(ppm) 

Integration 

1 Methylene 4.13 0.0195 

 Methoxy 3.65 1.00 

2 Methylene 4.14 1.00 

 Methoxy 3.64 641 

3 Methylene 4.12 1.00 

 Methoxy 3.65 66.2 

4 Methylene 4.11 1.00 

 Methoxy 3.65 19400 

 

Table 2: Chemical shift and integration measurements of used cooking oil biodiesel samples 

from 1H-NMR 

 



Sample Number Peak Type Chemical Shift 

(ppm) 

Integration 

1 Methylene 4.11 0.0366 

 Methoxy 3.66 2.34 

2 Methylene 4.15 1.00 

 Methoxy 3.65 112 

3 Methylene 4.14 1.00 

 Methoxy 3.64 1170 

4 Methylene 4.11 1.00 

 Methoxy 3.64 109 

 

Table 2 depicts the chemical shift and integration of peaks corresponding to the methylene 

and methoxy protons for four samples of used cooking oil biodiesel. Chemical shift and 

integration values were determined from the 1H-NMR spectrum of the biodiesel product. 

Peak type corresponds to the labeled protons in Figure 9 and 10.  

Integration values from Table 1 and Table 2 were used to determine the percent 

conversion of the cooking oil to biodiesel. Equation 2 depicts the formula for the 

determination of percent conversion8. 

  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

=

𝑀𝑒𝑡ℎ𝑜𝑥𝑦 𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
3

(
𝑀𝑒𝑡ℎ𝑜𝑥𝑦 𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

3 +
𝑀𝑒𝑡ℎ𝑦𝑙𝑒𝑛𝑒 𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

4
)

∗ (100%)                 (2) 

 

Equation 2 showed that the percent conversion of cooking oil into biodiesel was 

dependent on the ratio of the integrations of methoxy peak and the methylene peak. There 

were 3 methoxy protons on each biodiesel molecule and 4 methylene protons on each 

triglyceride molecule. The ratio of these two would not provide conclusive data when 

analyzed since the number of protons on each was not the same. A ratio of how each 

individual methoxy proton was related to the total amount of chemically unique protons 



would provide information about how much of the total protons were from the synthesized 

biodiesel and therefore tell us how much of the triglyceride had been converted.  

This equation was specifically used because the percent conversion was not directly 

measurable based on a single peak. While the decrease in size of a single peak would indicate 

the conversion of that peak, it alone was not enough to determine the percent conversion in 

comparison to other spectra. The integration of a peak depends on how many protons are 

associated with that peak and the concentration of the sample measured. Higher 

concentrations produce larger peaks, have more area under the curve, and therefore a larger 

integration. The ratio between the integrations was still the same, so the change in integration 

value did not change the number of protons producing the signal. And with more protons on 

an atom, a bigger integration value would be obtained. Since the concentration of each 1H-

NMR sample was not constant, Equation 2 was used to account for this. Equation 2 also 

accounted for only the conversion of glyceride into biodiesel and not any side products. This 

assumes perfect conversion of triglyceride into biodiesel, which is not the case. Tables 3 and 

4 show the percent conversions of the canola oil and used cooking oil samples. 

 

Table 3: Percent conversion of canola oil triglyceride to biodiesel over complete reaction 

Sample Number Percent Conversion (%) 

1 98.56 

2 99.88 

3 98.88 

4 100.0 

Average 99.33 

 

Table 3 depicts the percent conversion data of four unused cooking oil biodiesel samples. 

Percent conversion data was determined using the final 1H-NMR spectrum obtained and 

Equation 2. 

 



Table 4: Percent conversion of used cooking oil triglyceride to biodiesel over complete 

reaction 

Sample Number Percent Conversion (%) 

1 98.84 

2 99.34 

3 99.94 

4 99.32 

Average 99.36 

 

Table 4 depicts the percent conversion data of four used cooking oil biodiesel samples. 

Percent conversion data was determined using the final 1H-NMR spectrum obtained and 

Equation 2. 

 

Discussion and Future Work 

The average percent conversion for both biodiesel samples was calculated and 

compared using percent difference. Table 5 shows this data. 

 

Table 5: Percent conversion of both cooking oils to biodiesel over complete reaction 

Oil Type Average Percent Conversion (%) 

Unused Cooking Oil 99.33 

Used Cooking Oil 99.36 

Percent Difference of Percent Conversions 0.0279% 

 

Table 5 shows that the reaction samples showed very high percent conversion indicating that 

nearly all the starting triglyceride was converted into biodiesel. The very high percent 

conversion that was consistently obtained proves that the reaction scheme used for the 

synthesis of biodiesel was very successful and valid. Almost none of the cooking oil used in 

the creation of the fuel was wasted. 

Both the unused and used cooking oils provided very high percent conversion 

indicating that very little cooking oil was wasted and that this was a very successful and 

viable reaction scheme. A percent difference of less than 0.1% between the biodiesel samples 

percent conversion indicated that the points were nearly identical. Since both points were 

almost the same this indicated that the triglycerides in both used and unused cooking oils 

were converted equivalently. This indicated that the reaction was viable for both types of 



oils. While used cooking oils had high percent conversions, they had the problem of other 

side products in the final biodiesel sample. These side products included fatty acid chains 

that can harm the engines in which the biodiesel would be used. A method to remove these 

fatty acid chains needs to be developed to provide usable biodiesel fuels. 

Experimentation proved that the synthesis of biodiesel at high conversion was 

consistently obtained with our reaction. The problem with this reaction was the yield of 

biodiesel, while high in percent conversion, was low in volume of biodiesel produced. So, a 

lot of oil was converted into biodiesel, but the amount of oil was too small to produce a 

usable amount biodiesel. In order for a successful transition from petroleum-based fuels to 

biodiesel for engine use, large quantities of biodiesel must be produced by cheaper and easier 

production in comparison to petroleum-based fuels. In order to produce more biodiesel 

product, the entire reaction must be scaled up. Further experimentation determined that the 

reaction could be scaled up by five times the initial reaction size and successfully produce 

biodiesel, but much larger yields still must be produced. The upscaling was done by 

increasing the amount of each reactant, including the nano-reactor, by the same factor. Using 

this same relationship, the reaction would need to be scaled up by an extreme amount to 

synthesize a useable amount biodiesel for even a single engine. This scaling up would require 

a much larger reaction chamber and would also cost a significant amount of money. To 

combat this, a way to either lower the price on the reactants or to find a cheaper way to 

produce the biodiesel would be needed. 

 

Conclusion 

Nano-reactors provide an innate functionality that may be used in improve reaction 

success of organic syntheses with traditionally low or no yield. The structure of these nano-

reactors provides an ability to expand and condense with the introduction and removal of 

solvent respectively which can be manipulated to improve the yield as mentioned above6. 

The advantages of these nano-reactors were used to improve the success of the synthesis of 

biodiesel fuels. 

A reaction scheme for the synthesis of biodiesel fuels from cooking oils by the use of 

nano-reactors was proposed and determined to be effective. The effectiveness of the reaction 

was quantified using percent conversion of triglycerides to biodiesel. The reaction samples 



showed very high percent conversions, with an average percent conversion of 99.33% and 

99.36% for unused oil and used cooking oil respectively. The high percent conversion 

indicated a very effective pathway in the synthesis of biodiesel fuels. While used cooking oil 

provided a high conversion into biodiesel, it had the issue of having side products other than 

biodiesel in the final sample. Some side products are fatty acids that can harm engines using 

the produced biodiesel. Future work includes finding a way to remove these side products 

from the final biodiesel samples. To become commercially viable, a much higher amount of 

biodiesel must be produced, but this reaction scheme only produces a small amount of a 

biodiesel product. Future work would involve significantly scaling up the current biodiesel 

reaction and determining ways to decrease the price of the commercial scale reaction. 
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